Slides for the Presentation to
The Software Release Agents of NASA:
Technical Narrative

Dr. William Henry Jones
July 17, 2003

The following pages provide a technical narrative that more fully elab-
orates upon the slide set prepared for presentation to the Software Release
Agents of the National Aeronautics and Space Administration assembled in
congress at the NASA John H. Glenn Research Center at Lewis Field, Cleve-
land, Ohio on the 17" day of July, 2003.

1 Slide pst_vgrf_ 0111 — Project Integration
Architecture

This presentation will give a brief overview of the Project Integration Archi-
tecture (PIA) effort being conducted at the National Aeronautics and Space
Administration’s John H. Glenn Research at Lewis Field in Cleveland, Ohio.

Project management responsibilities for PIA have been exercised by var-
ious individuals over the passing years. The current designated project man-
ager for PIA is Ms. Theresa Benyo; however, Ms. Benyo has been detailed
over much of the past year as the project lead for the Glenn-lead Inventing
Flight celebration of the centenial of flight. During Ms. Benyo’s absense the
Chief of the Engine Systems Technology Branch, Mr. Richard Blech, has
been performing the project management role for PIA.

Dr. William Jones is, and has been since its inseption, the Technical Lead
for the PIA effort. A precursor effort, the Integrated CFD and Experiments
(ICE) effort, was lead by Mr. Dale Arpasi. Some small number of other
personnel have assisted in the PIA technical effort; however, without excep-
tion all have moved on to better-compensated positions both at the Glenn
Research Center and elsewhere.

A single, performance-based contractor has been provided through a task
assigned to N and R Engineering, Inc., a local, small engineering firm doing
business with NASA. This gentleman is nearing the end of his second year
of effort on PIA tasks and has made a few small contributions to the overall
PIA technical effort.

Finally, active efforts at commercialization and actual application of PTA
technology have recently been made by Battelle Memorial Research Insti-
tute (through a commercialization activities contract with NASA-Glenn),
Entara Technologies Group, LLC, (through a Software Use Agreement and
a pending Space Act Agreement), and C. Harnett Teska (through a Software
Use Agreement). C. Harnet Teska was recently admitted to the Center for
Advanced Technology and Innovation in Racine, Wisconsin, as one of only
six incubator projects now supported by that government /private/university
consortium.

2 Slide pst_vgrf_ 0112 — PIA: The Oversimpli-
fied Nutshell

PIA is an effort of considerable scope; thus, the reduction of its intent to
a single, short statement is likely to lead to more mis-understanding than
clarification. Nevertheless, some such nutshell explanation seems generally
inevitable. Thus,

Project Integration Architecture (PIA) is a distributed, object-
oriented, architectural framework that provides (in a machine-
intelligible manner) for the generation, organization, publication,
integration, and consumption of all information involved in any
process.

Putting this another way, the intent of PIA is to organize all of the infor-
mation generated and stored on computers. Furthermore, the intent of PIA
is to make this information intelligible not simply to people browsing away
through some portal, but to other computers so that applications can be
meaningfully linked together to form super-applications, applications search-
ing for some meaningful starting point or touch-stone can, themselves browse
through such inforation seeking what they need, and so on. Finally, it is the
intent of PIA to generate auditable records of what went on, where infor-
mation came from, and the like so that, when all the dust settles, one can
actually know by what process an answer was developed.

Making PTA an even more interesting project to understand, there is very
little restriction on the sort of information and process that PIA can accom-
modate. The basic PTA model is that information may or may not be put
into the computer, something may or may not be done to that information
by the computer to add to the value of that information, and information
may or may not come out of the computer. There is no further restriction
to the PIA model: there is no specification that PIA deals with analysis or
design application, no specification that databases of information are served,
no restriction to aerospace applications or automotive applications or phar-
macological applications, nothing more. Simply data might go in, something
might happen to it, and something might come out.

To conclude the confusion, one must understand that, in and of itself, PTA
does nothing. It is a framework, a methodology, but not an actual application
itself. It is somewhat like the Dewey Decimal System for indexing libraries:

just sitting there, the Dewey Decimal System is without value; it is only
when a librarian actually uses it to index the books of a library that the
Dewey Decimal System take on utility. If it just so with PIA: it is only
when developers wrap their information sources and sinks in PIA compliant
technology that PIA does something useful.

3 Slide pst_vgrf_ 0093 — Key Object-Oriented
Technologies Exploited by PTA

In order to accommodate the extremely laid-back expectations of the PIA
information /process model, two key object-oriented technologies have been
exploited to an extent perhaps beyond any previous effort: the technology of
self-revelation and the technology of semantic infusion through class deriva-
tion.

The first technology, that of self-revelation, is the ability to inquire of
an object as to its nature; that is, for an object to reveal its nature to its
consumer rather than require its consumer to fore-know the nature of the
object.

The natural analog of this technology of self-revelation is experienced by
a person every time he or she meets someone new. Other than the very
general expectation that the new person is a human being, fore-knowledge
of new acquaintances is generally very small. It is through self-revelation
that we begin to know another. We inquire, we ask questions: what do you
do for a living, are you married, do you own a home, so on and so forth.
The answers guide our further interactions; a person who turns our to be a
medical doctor guides us into our current need to inquire about some pending
medical condition and perhaps obtain an appropriate referral.

Self-revelation allows programs to be built in much the same way. Instead
of being programmed with a rigid expectation that needed information must
be found in exactly a particular place and in exactly a particular way, pro-
grams may be built with flexibile scenarios willing to respond to information
in the way and place it is encountered. Clearly, programming for this added
flexibility is an added burden, but it is also an added advantage. Programs
do not break because another program providing a needed nugget of infor-
mation is removed and a third providing that information is swapped in as
a substitute, nor need they break because in one situation B follows A while
in another A follows B.

Self-revelation is considered in two slightly different forms: a self-revelation
of kind and a self-revelation of content. Self-revelation of kind addresses just
that: of what kind is a particular object. This question and answer sets the
expectations about the nature and content of the revealing object. It is as
with a person answering “I am a medical doctor”: it sets your expectations
as to the kind of skills and abilities that you will find in the person.

The complimentary aspect of this self-revelation is then the self-revelation
of content: to what extent are expectations, in fact, fulfilled. You are a
thorasic surgeon: how many years of experience do you have, how many
operations have you performed? If this doctor has done 1,000 heart valves,
perhaps this is the doctor for you; if he just entered residency, probably not.
Similarly, a code looking for a flow-field solution to compare its results to can
inquire as to the validity of a found solution, can compare the geometries
of the two solutions, and the like to determine whether or not this is an
appropriate point of comparison.

The other technology necessary for self-revelation to be meaningful is that
of semantic infusion through class derivation. This is the technology by which
the nature of an object is refined by deriving it from a more general object.
As the successive layers of derivation are built up, the nature of the object
becomes more and more specific, and as a consequence the self-revelation
of kind becomes more useful and specific. Continuing the analogy with a
person, you find out first that the person is a working professional, that the
person is a doctor, then a medical doctor, then a cardiologist, and so on. As
each new layer is added, what you may then infer becomes more specific and
more valuable in determining whether this person is the person that fits your
needs.

4 Slide pst_vgrf 0085 — Semantic Infusion Through
Class Derivation

This graphic provides a specific example of the technology of semantic in-
fusion through class derivation by illustrating the heritage of a specific pa-
rameter class developed in the C+4++ prototype version of PIA. This class
starts from the patriarch of the entire PIA class system, the PObject class,
and is progressively derived and defined until, at last, it is specifically an
application parameter encapsulating the far-field, upstream total pressure of
a flowing gas.
Each layer of derivation contributes to the whole as follows.

1. PObject: This is the patriarch of the entire PIA class hierarchy. As
such, it does very little except declare that it is an object that is willing
to reveal its nature (self-revelation) in various ways.

2. PObjSta: This layer simply adds some boolean characteristics to an
object; that is, it adds things that may be either true or false about a
particular object.

3. PObjDgn: This layer adds to the object the ability to participate in
a directed graph. A directed graph is a very general and, often, very
useful structural form that allows relationships between objects to be
recorded.

4. PacBObj: At this point, the object is declared to be a functioning
part of an application, although just exactly which part and which
application (if any) is still unspecified. In PIA the most useful thing
that being a part of an application brings with it is the ability to be
described by a very flexible descriptive system, that being a form of
self-revelation of content. Another thing that comes with being a part
of an application is the ability to search upwards through the defined
structure of an application to find some particular layer; for example,
a parameter can search upward to find the problem configuration of
which it is a member.

5. PacPara: This layer declares that the part of the application is, in fact,
a parameter. A parameter is defined as being the principal information-
bearing kind of object: the input texts, the output numbers, what

7

10.

11.

have you. Parameters are held in problem configurations (groups of
parameters defining the specific state of a more generalized problem
being solved) and parameters can participate in dependency graphs so
that a change in one parameter can be correctly reflected in parameters
dependent upon that parameter.

. PacParaSca: This layer declares the parameter to be scalar in its

nature; that is, whatever it is, there is just one of it rather than an
array or a matrix of many of it.

. PacParaScaDoub: This layer declares that the scalar parameter has

a specific type: a double-precision floating point (real) number.

. PacParaScaDoubDim: This layer declares that the scalar, floating-

point number is dimensional in its nature; that is, the number repre-
sents a measurement in some unit system. That unit system is en-
capsulated in an associated description of the object using the general
mechanism defined back at the PacBObj derivational layer. (In the
CORBA-served version of PIA, this layer will turn off the ability to
deal with this number in any but a dimensionally-aware way.)

. PacParaScaDoubPrs: This layer declares that the dimensionality

introduced in the previous PacParaScaDoubDim layer is the dimen-
sionality of pressure; that is, it is a measurement in terms of force per
unit area.

PacParaGasScaPtl: This layer declares that the encapsulated pres-
sure number is, in fact, a gas total pressure. This means two things.
First, the number refers to a gaseous fluid such as air, not a liquid
and certainly not a solid. Second, the number refers to the total or dy-
namic pressure, that being closely defined as the static pressure plus the
pressure-equivalent of the gas’ velocity; in the terms of compuational
fluid dynamics, p, + 3pv’.

PacParaGasScaPtlFf: This layer further defines the encapsulated
gas total pressure number to be a far-field value. That is, this number
represents a value taken far enough away from the actual flow of interest
that its value is undistrubed by that flow of interest.

12. PacParaGasScaPtlFfUpStrm: This final layer declares that the far-
field gas total pressume is somewhere upstream of the problem and,
thus, represents the conditions before any possible disturbance by the
passage of the flow of interest.

As may be seen, this process of derivation has taken us from an amorphous
blob of an object to something very specific and very clear, something that
a computational fluid dynamics code trying to solve the flow past a moving
airframe could find, recognize for what it is, and put to use in establishing
the upstream, far-field boundary conditions of the flow.

Another aspect of PIA’s implementation of self-revelation is illustrated
by this diagram. PIA’s self-revelation supports a concept of depth: not only
can it be discovered what an object is on its surface (here, an upstream,
far-field, gas total pressure), but the object’s layers can be peeled away and
its nature all the way to its core discovered. The process of doing this is
called ecdysiastical analysis (from the Greek ekdysis, from ekdyein, to get
out of, strip off). By doing such an analysis, some codes can deal with whole
classes of information at the level suitable to the situation.

As a practical example of ecdysiastical analysis, consider a Graphical User
Interface (GUI) that simply wishes to display numerical values. The code to
do this can cast aside all the specifics of closely defined, semantically-infused
parameter classes and deal with a PacParaGasScaPtIFfUpStrm value,
as well as a whole host of other such values, as simply being a PacParaS-
caDoubDim dimensional value. The GUI can request the value in the unit
system currently selected by the user and display the value in its edit box
or whatever. The GUI doesn’t really care if the value is a gas total pressure
or the distance from Washington, DC to Insanity, PA as long as it gets the
value and the units right.

5 Slide pst_vgrf_0055 — PIA Application Ar-
chitecdtural Wall Concept

Conceptually, PTA builds a consistent architectural wall between consumers
of applications and information and the actual application and information
resources. This wall is shown in this diagram as the column of blue blocks,
each conceptually connecting on its left in an orderly top-to-bottom, right-
to-left, plug-and-play manner. The job of each blue block is to adapt from
the world of order on the left to the world of individual confusion and chaos
on the right. In this world on the right are the different sorts of information
and application resources: databases of experimental information, archives
of geometry information, application codes capable of turning inputs into
outputs, what have you. It is even possible for there to be no oddly-colored
block at all; a PIA wrapper can be the entirety of an application in and of
itself.

The advantages of the world of order shown on the left are relatively
obvious.

1. Common tools can be used to access all sorts of information. For exam-
ple, a single Graphical User Interface (GUI), perhaps built with features
and abilities appropriate to the discipline of its user, can provide ac-
cess to all manner of applications without ever having been specifically
informed of any such application.

2. Search engines and browsers can be developed that roam over the whole
of offered information without ever needing fore-knowledge of the kinds
of information that will be encountered. (Compare this to current
database access tools that must be built with an explicit knowledge of
the record formats that will be encountered.)

3. Most importantly, applications themselves can search out into this
world of order to interact with other applications without the need
of human direction. For example, a computational fluid dynamics
code charged with solving a posed flow field problem can, on its own
(programmed) initiative, search for a similar solution from whatever
databases of experimental results it can find.

Another point illustrated by the bottom two wrapper blocks of this dia-
gram is that a single wrapper need not be the only access path to an applica-

10

tion or other information resource. For example, “journeyman” and “master”
wrappers can be devised to the same application code: the first providing
heuristics and other assistances to allow the less-knowledgable user useful,
but safe, access to the application while the second allows the assured master
of the situation to turn every control as he sees fit to test the limits of validity
and performance.

11

6 Slide pst_vgrf 0094 — PIA Self-Revealing
Application Architecture

6.1 The Basic Structure

This diagram gives a more technically accurate depiction of the “application”
architecture defined by PIA. An application is represented by a single, coor-
dinating object, labeled PacAppl in this picture, from which three principal
structures emanate.

1. Parameter Configuration Tree: The actual parameters of an appli-
cation are held in a parameter configuration tree (the middle structure
emanating from the PacAppl object and proceeding toward the lower
left corner of the diagram) which organizes them into distinct config-
urations of the problem being studied. The configurations track the
path of investigation: typically, a number of sibling configurations are
studied, a “best” one or two are selected, and investigation proceeds
downward from those selected points.

2. Parameter Identification Tree: The identification and structure of
the parameters of an application is revealed by a parameter identi-
fication tree (the right-most structure emanating from the PacAppl
object).

3. Operation Map: The operations that a particular application can
perform are revealed by an operations map (the left-most structure
emanating from the PacAppl object).

Each of these structures is discussed at greater length in the following
sections.

6.1.1 The Parameter Configuration Tree

As mentioned in the enumeration above, the primary information — the data,
parameters, and the like — of an application is held in an n-ary tree of pa-
rameter configurations. The blocks representing these are labeled PacCfg
in the diagram. Each of these configurations represent a distinct point of
investigation in the encapsulated application. For example, in an experimen-
tal application, each configuration might represent a distinct setting of the

12

experiment at which data was acquired. In the analysis of a design, each
configuration might represent a particular point in the design space that was
evaluated and compared against other configurations of the design.

Each configuration then contains in itself a map of organized parame-
ter objects sorted by the fully-qualified name developed for each parameter
identification. (The development of the fully-qualified name is discussed in
the next section.) These parameters are represented in the diagram by the
block or blocks labeled Par: x/y/z, where the x/y/z portion represents
the fully-qualified name associated with the parameter.

The general intent of the parameter configuration tree is to track the
progress of problem investigation. Generally, it is expected that, at any
particular juncture, a number of possibilities will be studied and that these
various possibilities will be well represented by a set of siblings in the pa-
rameter configuration tree. The expectation continues by suggesting that of
these sibling configurations some few, perhaps as few as one, will be selected
and represent the best choice for advancing the investigation. The parameter
configuration tree will then represent further investigation as descendent (or
offspring) nodes from the selected siblings, again giving rise to a new set of
siblings. As various alternatives prove to be less than fully competitive, their
branches of the overall parameter configuration tree will simply be aban-
doned while more competitive selections will continue further growth until,
ultimately, some final, best configuration is found.

Because this process of investigation is expected, usually, to involve only
small changes from configuration to configuration, the parameter configura-
tion tree introduces the concept of parameter inheritance: a needed param-
eter missing in a particular configuration is considered to be inherited from
the most proximate ancestor of that configuration actually containing that
parameter. In this way, investigations involving merely the tiggling of a few
key parameters can avoid the burden of replicating the entire parameter set
from configuration to configuration.

Naturally, situations exist in which the parameter configuration inheri-
tance protocol is inapproprate. Consider, for example, an experimental data
application in which each configuration is actuallly a complete data sample:
in such a situation it would be inappropriate to inherit experimental read-
ings from other samples when the readings are missing due to instrumen-
tation that has failed during the intervening period. To accommodate such
situations, the parameter inheritance protocol can be turned off on a case
by case basis. The implementation of this option is a part of the parameter

13

identification mechanism that is to be discussed next.

6.1.2 The Parameter Identification Tree

The parameter identification tree actually arose from the concepts of the
parameter configuration tree, specifically the parameter inheritance protocol
in which a parameter missing from a particular parameter configuration node
can be inherited from the most proximate ancestral configuration actually
containing that parameter.

While not always the case, parameters are often structural in nature,
existing as a coordinated unit rather than simply as isolated values. For
example, some computational fluid dynamics codes express their flow fields
as multiple blocks having the same structural form, but different specifics
suited to the nature of the flow in the region the block covers; the same
parameters repeat from block to block, but contain different values. Usually,
these structuralizations are represented as a literal pattern of data: some
key item introduces a new structure of data and then the pattern is followed
again to identify the various parts.

Because PIA’s parameter configuration tree would like only to create the
pieces of data the distinguish one configuration from its ancestral line, this
literal structuralization of data produces a problem: how does one identify
the structural unit a particular item belongs to when all of the structures are
not necessarily present in the configuration? The parameter configuration
contains no key to introduced the beginning of a structure and the patterned
elements of each structure do not exist unless they represent a material dif-
ference from an ancestral configuration.

The parameter identification tree was introduced by PIA to deal with this
difficulty. That structuralization of parameters is encoded into the structure
of the parameter identification tree. Each node of the parameter identifica-
tion tree is given a name, those names being unique among siblings in the
tree. Each terminal node of that tree then identifies its corresponding param-
eter by concatenating the names from terminal node to patriarch to produce
a fully-qualified name by which the parameter is known within any param-
eter configuration. By so doing, the revealed structure of data is flattened
into a single text name and the need to replicate data within a configuration
to preserve structure is eliminated.

As an example of this structuralization, consider again the multi-block
computational fluid dynamics code wrapper. One approach to parameter

14

identification would be to repeat a flow block identication structure once for
each flow block actually involved in the solution of the problem. The name of
the head of each flow block identification subgraph would, of course, have to
be unique while the names of the various parameters within each subgraph
could repeat. Each developed fully-qualified parameter identification name
would be unique at the flow block identification level. If the course of investi-
gation involved only the tiggling of the parameters of a few flow blocks out of
many, those parameters would be clearly identified in their configurations as
pertaining to the flow blocks of interest by their structuralization-flattening
names.

The parameter identification tree is also the mechanism by which the
parameter inheritance protocol of the parameter configuration tree can be
turned off. In simple cases, this may simply be the disabling of the support
mechanism in the particular identification node of the tree. Greater sophis-
tication is, of course, possible. A customized, derivative identification node
can be developed with knowledge of particular situations when such needs
arise.

The identification mechanism implements another feature: the ability
to report whether a particular parameter is, in fact, visible. An invisibile
parameter, even though it might actually exist in a configuration (or that
configuration’s ancestral line), is reported as not existing. This ability may be
used to disable the parameter inheritance protocol when that is appropriate.

To understand the visibility feature, consider a situation in which an
analysis application has an optional model with a number of parameters that
specify the operation of that model and a single parameter that turns that
model on and off. The identification nodes for the specification parameters
may be developed with knowledge of the on/off selection parameter so that
they will report the specification parameters as being invisible when the off
selection is the visible selection. In that way, the specification parameters
will appear not to exist, even though they might exist in (or be inherited by)
a particular configuration that has (or inherits) the off selection parameter.

6.1.3 The Operation Map

The final element of the application architecture displayed in the diagram is
the operation map, illustrated by the boxes labeled PacOp in the diagram.
This is simply a map (sorted by name) of encapsulated operations that the
application is willing to do. Typically, one such operation converts input

15

parameters into output parameters by running the encapsulated application;
however, such an operation is not a requirement and is, indeed, very likely
to be absent in applications that simply serve archives of information. There
may be other operations that such applications may offer. For example, an
experimental database application might have the ability to extend its supply
of offered information by checking with its wrapped experimental facility.

Operations, in a manner similar to parameter identification visibility,
have the ability to report whether the encapsulated activity can currently
operate. For example, a run operation might check to see if the necessary
input parameters exist before attempting the operation. While the encapsu-
lated operation, itself, is expected to check and honor pre-requisites (rather
than simply accepting the invokers assurances), the ability to inquire first
is provided to allow interactive consumers such as Graphical User Interfaces
(GUIs) to gray-out or otherwise indicate that the possibility is not currently
available.

6.2 Operation in Context

The diagram shows some graceful, sweeping curves from both the terminal
nodes of the parameter identification tree and from the nodes of the opera-
tions map. As may have been anticipated, both of these mechanisms operate
in the context of an identified node of the parameter configuration tree. For
example, nodes of the operation map determine whether or not they are
enabled for operation by examining the parameter content of the parame-
ter configuration node provided to them; a run command disables itself if it
does not see the necessary input parameters in the identified configuration.
Similarly, the parameter identification nodes make their visibility and inheri-
tance judgements based upon the information in the configuration identified
to them.

6.3 The Ecdysiastical Sorting Structure

A fourth structure is actually included in the PIA application architec-
ture; however, due to its complication the structure is not represented on
the diagram. This structure is a complete, ecdysiastical sorting of all the
information-bearing objects existing within the application. This object set
is generally considered to begin with all of the parameter objects existing in
all the configurations of the application; however, the set is not limited to

16

only parameter objects. Other objects such as selected kinds of description
objects may also be included in this set.

The ecdysiastical sorting of a set of objects is a comprehensive, layer-
by-layer sorting of those objects, rather than just a sorting by the surface
type of an object. Thus, an object with 15 layers of derivation from the
patriarchial PObject class is included in 15 separate sortings corresponding
to each of those derivational layers. By doing this, objects can be identified
at the derivational level at which it is intended to deal with them, without
regard to whether or not they are exactly of that derivational level, or of
some level derived from that level.

The inclusion of the ecdysiastical sorting in the application architecture
is thought to be important since applications may choose to make all of their
parameters customizations beyond the well-known. For example, an com-
putational fluid mechanics code named Xyz may choose to further derive a
far-field, upstream Mach number parameter into an Xyz, far-field, upstream
Mach number parameter. A sorting of information by its encapsulating ob-
ject’s surface type would be of no use to an outside consumer of information
since it would have no knowledge of anything specific to Xyz, but an ecdysi-
astical sorting would allow that outside consumer to go straight to far-field,
upstream Mach number parameters without concern that in this case they
were Xyz, far-field, upstream Mach number parameters.

17

7 Slide pst_vgrf 0095 — Integrated Applica-
tion Graphs

Having wrapped applications in PTA-compliant wrappers enables the next
step, one of the principal goals of the PIA effort: the integration of many
applications into a multi-fidelity, multi-disciplinary, cooperative whole. This
diagram illustrates this with an (imagined) interconnection of applications
used to analyze the performance of a proposed Rocket-Based, Combined-
Cylce (RBCC) engine intended to propel a single-stage to orbit vehicle.

The flow of information starts with a geometric definition of the engine.
That definition was, in fact, held in a commercial Computer Aided Design
product. (In an actual PIA prototype demonstration effort, this geomet-
ric information was successfully accessed through a PIA-compliant wrapper
that was built upon the Computational Analysis PRogramming Interface
(CAPRI), a vendor-neutral geometric Application Programming Interface
(API) technology developed by Dr. Robert Haimes of the Massachusetts In-
stitute of Technology under a grant from the Computer and Interdisciplinary
Studies Office of the Glenn Research Center.)

From the geometric definition of the engine, information would then flow
to APAS, an airloads panel code, GASP, a more comprehensive computa-
tional fluid dynamics analysis code, and NASTRAN, a well-known, commer-
cial finite element analysis code. As depicted by the diagram, information
generated by these components would flow on to other components until,
ultimately, some sort of answer would come out of the bottom indicating the
merit of the proposed engine design.

This diagram then adds an imagined great recirculation to the top in
which a new configuration of the engine is proposed, a new geometry entered
as a new PIA parameter configuration, and the process restarted.

A key element in making such an integration work is the self-revelation
and semantic infusion technology PIA is built on. In typical integration
technologies, it must be specifically explained by the integrator just exactly
where each integrated application is to find its input, how it must transform
what it finds into what it needs, and where it should put its products so
others can find it. With PIA self-revelation technology, an application is
simply connected to another and, upon an appropriate nudge in the side,
looks for itself to see what it can find and, based on what it finds, decides for
itself what use it can make of that information. The coding for such an effort

18

is, of course, difficult, but the payoff is significant: a wrapper is not coded for
connection only to some other specific wrapper, but instead is coded simply
to look up the line and see if it can find the information it needs.

In actuality, this integrated, comprehensive analysis has not been done
because of the effort involved in developing all of the PIA wrappers to all
of these codes. What has been done, though, is a much simpler effort in
which the actual engine geometry was extracted through a PIA wrapper and
the relevant information transported automatically to a PIA-wrapped flow
stability analysis code not shown on this diagram. This effort demonstrated
the validity of the concepts and assured that, should effort extend to such a
more sophisticated analysis, those basic ideas of information flow would in
fact work.

19

8 Slide pst_vgrf_0105 — Autonomous Solution
Systems

8.1 The Need and Basic Idea

The ability to flexibly integrate applications into comprehensive, multi-fidelity,
multi-disciplinary analyses of large, complex systems opens up a new area
of opportunity, but also a new area of difficulty. Experience with current,
commercial integration technologies suggests that the raw number of details
involved in an integration begins to overwhelm the human being as the num-
ber of elements grows beyond the general range of 15 to 20 applications. Even
with the more flexibile and adaptive integration technologies demonstrated
by PIA prototype efforts, this number may not be significantly greater be-
cause, while relieved of the actual detail effort, the human integrator must
still keep in mind the kinds of information that must be generated and the
general causal flow of that information. This number of 20, 30, or 40 ap-
plications managable through even the enhanced technologies of PTA must
then be compared with industry goals of integrations on the order of 1,000
applications or more. Indeed, Boeing Aircraft Company estimates that it
has a total of some 10,000 active engineering applications which it would like
to see operable in a cohesive, integrated manner.

It is thought that the PIA technology of self-revelation again offers a po-
tential solution to this problem. As objects in general have been devised
to reveal their kind and their characteristics, it is entirely natural to devise
application objects that are willing to reveal the products they produce (in
terms of the kinds of parameter objects generated as the output of the oper-
ation of the application) and the inputs needed to produce those products.
Using this information, it is then proposed that an algorithm can be de-
vised to assemble application graphs that solve a problem posed in terms of
the desire to attain an optimal value of a particular result. With such an
algorithm, the application integration selection process would be converted
from an essentially manual process performed by a person (with the help of
computer-based tools) to an automatic process performed by a machine.

20

8.2 The Essense of the Algorithm: Program Linkage
Editing

The essense of this algorithm has already been in use on a daily basis since
nearly the dawn of electronic computing. It is the program linkage editor,
often known simply as the “linker”. The linker is usually given some initial,
incomlete chunk of programming, usually a program named main. This
program has, in one way or another, two tables: a table of entry point
symbols which it defines and a table of entry point symbols for which it
needs definitions to be made complete. The linker drops this program chunk
into the building program image, notes the entry points that are now defined
somewhere within that chunk, and adds the entry points for which definitions
are needed to the linker’s own internal table of things it is still looking for.
The linker then proceeds on to other bits and pieces of programming supplied
to it: other code modules, specifically-specified libraries, standard libraries,
and the like. As the linker browses through each of these programming
sources, it keeps in mind the list of things it needs. When it finds a chunk
that satisifies a need, it drops that chunk into the program image, moves the
satisfied entry points from the needed table to the defined table, and adds
to its own table of needs anything new that the added chunk needs. This
process continues until the needed definition table is empty. If the linker
comes to the end of its browsing and still has things that it needs definitions
for, it then knows that it is impossible to create the desired program and
prints an error message.

The automatic generation of an application integration graph to solve a
posed problem is seen as being this same fundamental linkage editing algo-
rithm, except that now the symbols are not entry points in program code,
but kinds of parameter objects. For example, let us pose a problem as being a
desire for the best cost per pound to low earth orbit. Obviously, we will need
a CostPerPoundToLEOQO parameter as our final result, so we tell our algo-
rithm to put that in its needed parameter table. The algorithm is then told
to solve that problem. It looks at its table and realizes that it will need an ap-
plication that produces CostPerPoundToLEO as its output, so it searches
the PIA environment for an application claiming (through self-revelation) to
produce that result. Finding such an application, the algorithm

1. Adds the application to the building application graph,
2. Takes CostPerPoundToLEO out of the needed table and puts it in

21

the produced table,
3. Asks the application what it needs to make that particular result, and

4. Puts those parameter needs into the needed table (assuming, of course,
that those inputs are not already available).

This process then continues on, looking for applications that produce the
kinds of information that still reside in the needed parameter table.

The application graph assembly process ends in a manner slightly differ-
ent from the linkage editor. The linkage editor stops when its needed entry
point table is empty: simply, it has found every thing it needs and an explicit
answer to its problem has been found. That should not be the case in applica-
tion graph assembly because it leads to the conclusion that there is only one
answer, not good and bad answers. Instead, the application graph assembly
algorithm should stop when it finds that all its needed inputs are guessable
on a random basis. The technical term for this is that its needed inputs form
an independent design vector. This characteristic is, again, something that
can be identified through the technology of self-revelation: as each needed
input parameter is identified, it is asked whether it is a randomly-guessable
input; if it is, the algorithm would so note and not try to find an application
to satisfy that particular need.

The significance of randomly-guessable inputs (the independent design
vector) is that, given any particular set of such random numbers, some design
is specified and may be analyzed. It may or may not be a good design, but
it is at least a design. Having this, the problem is now reduced to one of
figuring out which set of numbers produces a good, and even a best, design.
This task comes under the broad term of “optimization”, which has already
been, and continues to be, extensively studied.

8.3 After Assembly; The Optimization Process

The topic of optimization of a design given a method of solution is really
an issue subsequent to the autonomous formulation of the solution graph.
Nevertheless, a couple things might be noted at this junction. Because real,
complex systems are likely to have large design vectors, the optimization of a
design is likely to be very challenging. The Langely Research Center, among
other organizations, has been working on technologies to partition such a
large problem into smaller, more managable units that may be optimized

22

quasi-independently in a manner still in concert with the whole. Such tech-
nology will probably be vital. Beyond this, more common technologies will
probably divide the overall optimization process into distinct phases along
the following lines.

1. A statistical characterization phase may be able to sort out the inde-
pendent parameters that have significant effects upon the design. This
will allow less important parameters to be ignored, or at least neglected
until phases of final refinement begin.

2. A genetic manipulation phase may be of use in identifying the region
of a global optimum with relative speed, thus avoiding a lengthy opti-
mization into what is only a local optimum.

3. A true optimization phase would then refine the selected design. Less
significant independent parameters might be re-involved in the design
process during later stages of this process.

4. A final “six-sigma” assessment of the design might further refine the
design, possibly backing away slightly from a truly optimal result to
obtain a more-reliably manufacturable design.

There are, of course, a great many details to real optimization processes.
One in particular is that, in general, design spaces are not unconstrained.
Many parameters will have constraints: usable and ultimate strengths of
materials, minimum spacing of fastners, maximum response rates for con-
trols, all manner of things. Again, it is expected that the technology of
self-revelation will allow these and other issues to be dealt with in a flexible,
adaptive manner. The optimizer will have to ask each of its variables and
each of its applications about those things and arrange itself so as to meet
those specified requirements

23

9 Slide pst_vgrf_0098 — Autonomous Solution
System Benefits

The advantages of autonomous solution systems are many. First and fore-
most is that integration beyond the limits of human fuddling is enabled. The
tendency of the human, or even the team of humans, to get confused as too
many facts get tossed into the air at once is replaced by the mindless, nearly-
inerrant plodding of the machine. Linkage editors today flawlessly assemble
programs with tens-of-millions of entry points; integrating a mere 10,000 ap-
plications into a particular solution without muffing a single detail ought to
be like falling off a log by comparison.

To further understand the benefit of this automated extension, consider a
human being attempting to integrate 400 applications, each with an average
of 50 connections to make to other applications of the integration. This would
require the making of 20,000 connections. If a person with the proverbial
99.99% accuracy attempted this feat, there would be an 86% chance that
at least one of those connections would be wrong. This is far too great a
probability to be tolerated in a great many businesses from space flight to
the design of super-tankers.

Akin to this first advantage is that the same problem may be re-solved as
easily when new resources come available. With the advance of knowledge,
new resources of design and analysis are certain to become available. Revising
a massive human effort of integration in order to incorporate a few new
wrinkles might give managers some pause; however, simply double clicking
an icon to see how the solution shakes out today with the new resources in
the system would give few any concern.

Another possibility that arises is that applications might eventually be
validated for the quality of their analysis; a number that indicates how good
their results are. Starting with some arbitrary value for the random inputs
feed into the solution, these accreditation values could be applied to assess
the validity of the final output. Furthermore, automated analysis could be
done of the progress of validity through the course of the solution graph. Ar-
eas of weak ability, in which the validity of the progressing solution did not
increase steadily, could be identified. Indeed, some applications might assess
their validity based upon the actual values of the current problem configura-
tion (for example, a computational fluid dynamics code might correlate its
validity to its achieved convergence) and would be able to contribute to the

24

identification of less valid areas of the design space.

This concept of result validity might then be used to consider alternative
solution strategies. An over-rich analysis environment has the potential of
solving a given problem more than one way. Two approaches to this dilemma
suggest themselves. One approach is to use self-revelation to extract validity
estimates at the time of application graph assembly and select the solution
approach that seems to offer the best results. The alternative approach is
simply to assemble the multiple solution methods, probably as independent
solutions, exercise them all, and see after the fact which gave the best solu-
tion.

Finally, another key benefit of integration technology in general which
is made more complete by autonomous solution system technology is that
discipline expert’s team participation time may be significantly reduced. In-
stead of attending weekly team meetings to go over the current results and
decide what cases will need to be analyzed next, and then spending the rest
of the week turning the crank on those cases, the discipline expert will be
able to leave all of that to the computers in the back room — he or she won’t
even have to sit in on the initial planning sessions thrashing out just how
the problem is going to be solved. This gives the discipline expert more time
to do what he or she is actually paid to do: improve his or her discipline.
While the back-room machines tirelessly turn the crank, the discipline expert
can be developing better analysis modules, embedding more knowledge into
revised PIA wrappers as to how to exploit this code, and the like. The only
time the discipline expert’s attention will be diverted into the mundane task
of actually turning the crank is when the wrapper phones home for advice
on how to proceed in a case outside its built-in experience.

25

10 Slide pst_vgrf_.0114 — CORBA Migration
Benefits

PIA goals embraced from the beginning large, integrated analysis efforts. As
such it was assumed without question that the final implementation would
be in a net-enabled form that allowed many computers to partcipate in (and
devote their energy to) a coordinated effort. From that standpoint alone,
migration to a standard such as the Common Object Request Broker Archi-
tecture (CORBA) was a given.

One of the aspects of bringing many computers into a cooperating PIA
environment was the nearly-limitless expansion of resources. Beyond the
simple, raw expansion in compute power, a necessary expansion in storage
space also accrues from the re-implementation in CORBA technology. One
of the things learned in the C++ prototyping phase is that PIA creates
objects (and, regrettably, overhead) at a significant rate, a very significant
rate. Unfortunate as it may be, all of this wonderfulness does come at a
price.

The CORBA re-implementation provides a means, though, to at least
pay this additional expense. CORBA allows objects to be deactivated (tech-
nically, etherealized); when some task comes in for a deactivated object,
CORBA provides a mechanism to re-activate that object (technically, it is
incarnated). PIA uses these basic mechanisms to create, in effect, a second
kind of virtual address space: object activity is tracked and objects that don’t
seem to be doing much are etherialized, their internal state being stored on
secondary storage. When (and if) a method delivery does come in for an ethe-
realized object, PIA uses the CORBA mechanisms to re-create that object,
restore its internal state, and return the object to active operation.

The net effect of this use of object etherealization and incarnation is
to extend the PIA data storage space to a practical infinity. Objects (or,
more exactly, their internal state files) may be stored to the limit of the
capacity of all the disk drives that may be attached to all the computers
that may be joined as servers to any PIA collective. The PIA “name space”
allows this set to extend to all the computers that can be joined to the
Internet. Theoretically, all the computers of the entire world could be applied
to hosting and storing information and data through PIA.

Another feature of the CORBA re-implementation of PIA is that PIA now
becomes implicitly a multi-user system. CORBA provides no base mecha-

26

nism for restricting access to a particular user or client machine. Any user or
client that can identify a CORBA-served object can deliver method invoka-
tions to it.

Also, CORBA holds out the promise of cross-language access to informa-
tion. In theory, a JAVA client could access a C++ server of information.
Actual practice of this theory has been, predictably, a little more difficult
than the theory.

A final benefit of the CORBA migration of PIA technology is that it en-
ables a new mode of software delivery. The functionality of an application
can be served through a PIA-compliant, CORBA-served wrapper by a devel-
oper of a software application without the necessity of releasing the actual
application code to the consumer. In addition to securing the code against
piracy, the potential revelation of proprietary techniques, and the like, this
technology may also significantly reduce software maintenance costs since
the developer need only maintain the software copies actually resident on
his own servers. Production of current-release media, shipping media to cus-
tomers, and installation of revised software on customer machines may all be
eliminated. While this does eliminate what may well be a profitable business
unit for the provider of software, it correspondingly eliminates a bothersome
overhead for the customer and allows him to devote more of his resources to
productive effort. Correspondingly, this allows the developer to devote more
of his capital resources to product development and maintenance of the prod-
uct’s competitive position in the market, rather than simply providing office
space, production facilities, and the like, for a software maintenance unit.

27

11 Slide pst_vgrf 0116 — PIA Speed of Data
Access

When dealing in such huge data volumes as PIA anticipates, no system can
reasonably expect to be characterized as “fast” in the sense that most people
understand that term in the context of computing; however, PIA applies
tools that are expected to allow expeditious access to such volumes of data.

The first requirement of expeditious data access is that the data must be
sorted in some manner so that a search for a desired item can be directed
toward that item. Exhaustive searches, in which every item is picked up
and examined for the desired characteristic, will never be efficient by any
standard and, when extended to the exa-item (that is 2 to the 60th power or
approximately a billion billion items) range, will become truly exhausting.

In a great deal of modern programming the sorting method of choice is
the hash table because of the hash table’s order I search performance. It
must be remembered, though, that this search performance is based upon
the hash table’s size being some modest fraction of n, the sorted item count.
Frequently, implementors of hash table solutions go to the additional effort of
allowing the hash table to dynamically re-size itself as the number of sorted
items changes. Given the speed of the hash table, the size and additional
complication of dynamic re-sizing are equitable trade-offs.

The hash table was an untenable choice for PTA, though, given the funda-
mental presumptions of data volume. To sort a billion billion items effectively
would require a hash table of perhaps 10 or 100 million billion entries. Cre-
ating a hash table so large is simply impractical and the cost of re-sizing such
a table as data volume changes is nearly unthinkable.

As a result of the impracticality of pursuing hash-table technology to
the desired level, PIA settled upon the balanced, binary tree as its primary
sorting mechanism. The balanced, binary tree provides a reliable, scalable
order log n search performance. This means that a search for a particular
item out of an exa-item tree will require about 60 key comparisons. (To
obtain similar performance, a hash table would have to have about ten million
billion entries.)

Because the PIA balanced, binary tree sorting system is built upon PIA’s
distributed, active/inactive object infrastructure, the burden of serving an
exa-item tree can be spread over a cluster (indeed, most probably a large
cluster) of server machines and storage farms. This requires no special in-

28

vokations or incantations, but merely falls out of the nearly unavoidable act
of building with the tools supplied by PIA.

There is another aspect, though, to the speed of data access: the speed
at which the information of a particular object can be obtained when that
object has been deactivated and its state stored on some secondary storage
device. Since file systems typically resort to simple linear searches to find a
file of a particular name, simply dumping all the billion billion files holding
the internal states of a billion billion inactive objects into a single directory
is untenable — it would result in an average search of one-half billion billion
file names to find any particular file.

Again, PIA resorts to a tree structure to reduce the magnitude of this
problem. While a matter of server configuration, typically a 16-way direc-
tory tree structure with a depth appropriate to the anticipated file load is
configured. For example, a 16-way directory tree 15 layers deep can accom-
modate 16 billion billion files with an average lookup of only 128 filename
comparisons (an average of 8 comparisons for each of the 15 directory layers
plus a final 8 in the file-containing layer) to locate any particular file.

Now we can consider the composite speed of these two systems. Con-
sider a PIA-implemented tree sorting information for a billion billion items.
Suppose that all the objects of that tree are initially deactivated and that
the files containing the internal states of those objects exist within a PIA
directory structure configured to handle the 16 billion billion files discussed
above. How long does it take to identify one particular item for which we
have the sorting key? To begin with, we will have to examine, and therefore
instantiate, an average of approximately 60 different objects to perform the
necessary key comparison in order to navigate across the tree to the desired
object. In order to instantiate each of those objects, we will have to find
their associated state files from among the 16 billion billion files in the stor-
age server, a process that takes on average 128 file name comparisons. So,
overall, we will have to do approximately 7,680 file name operations (60 ob-
jects times 128 file name comparisons for each object) to locate the desired
data.

The question of access speed now becomes one of determining how fast
we can perform the 7,680 file name comparison and the less-significant 60
file open operations. This, of course, depends on many factors: how busy is
the storage server, how fast is the connection between the storage server and
the object-serving machine, so on and so forth. Let us just grab a number
out of the air: let us suppose that we can perform a file name comparison

29

in about 10 milliseconds. (This is about the speed at which a modern disk
drive can move its heads and about two orders of magnitude greater than
the rotational latency of such a disk drive.) At this speed, we can estimate
the time to do our 7,680 file name comparison operations as being about 77
seconds — about a minute and one quarter.

Waiting something over a minute for the piece of information you want
to come up may not seem like a staggering performance at first; it is diffcult
to generate a real conceptualization of what finding one particular piece
out of a billion billion items really means. Consider this analogy, though:
suppose that the budget of the United States is one trillion dollars — that’s
$1,000,000,000,000 — per year and is held flat at that value for the next
million years. Now suppose that all that money is printed up in one dollar
bills and stacked around you. That would be a cube of dollar bills a little
less than 8 miles on each side; about 500 cubic miles of dollar bills in all; it
would be a cube that would pretty much cover downtown Cleveland, Ohio,
and reach up to where the trans-continetal airliners fly. Let us suppose that
as you stacked up all these dollar bills, you took notes or sorted them by
serial number somehow. How long do you suppose it will take you to find
a particular one dollar bill, by serial number, out of all those mountains of
money? A little over a minute, perhaps? That is what it means for PIA to
find one particular data item out of a billion billion such items in a little over
a minute.

30

12 Slide pst_vgrf_0120 — Project Status

At the present time, C++, single-machine prototyping of the basic PTA tech-
nologies is complete. An integration of a real engine geometry with a flow
stability analysis was achieved and a performance improvement from several
weeks for the hand process to a fraction of an hour for the PTA-integrated
process was demonstrated. Moreover, the key technologies of self-revelation,
semantic infusion through class derivation, and information propagation were
proved.

A re-implementation and extension of PIA technology to the distributed
object world of the Common Object Request Broker Architecture (CORBA)
has begun. All of the foundation layer of PIA (that is, the various struc-
tural forms of arrays, matricies, maps, lists, organizations, and the like) are
complete and have been well demonstrated. Implementation of the applica-
tion layer infrastructure (the concept of a PIA collective, a user, access con-
trols, descriptive elements, and the like) is also complete and demonstrated.
Implementation of higher application concepts (applications, configurations,
parameters, and the like) is well begun and is expected to be available in the
fall/winter of calendar year 2003.

Commercialization planning has begun. Many meetings with Battelle
Memorial Research Institue, which operates the Great Lakes Industrial Tech-
nology Institute and other commercialization efforts under contract to NASA,
have been held. Additionally, four Software Use Agreements are in place
with Emergent Technologies (Lewis Incubator for Technology, LIFT), Tal-
Cut Company, Entara Technologies Group, and C. Harnett Teska (Center
for Advanced Technology and Innovation in Racine, Wisconsin).

Entara Technologies has specific commercial interests in the pharmacol-
ogy area and intends to use PTA data handling capacities in particular to
facilitate the data mining of the human genome for rapid drug discovery.
Entara hopes to have four beta-test sites for their utilization of PIA tech-
nologies in place during calendar year 2004.

C. Harnett Teska intends, again, to build particularly upon PIA’s data
handling capacities to facilitiate efforts in the Geographical Information Sys-
tems area. Among other things, GIS can provide decision support abilities
thought to be of significant benefit globally, and especially so in the devel-
oping world. Although Teska intends to focus on issues for the developing
world, it should be noted that the group providing the principal impetus
behind GIS efforts is the petroleum industry.

31

13 Slide pst_vgrf 0100 — Tentative Commer-
cialization Plan — Core Technology

The key insight needed to formulate a commercialization plan is that inte-
gration technology is, from beginning to end, about getting things to work
together. No single fact about the products currently provided by the private
sector in the integration technology marketplace is more striking than that
their products do not work together; that is, the product from vendor A does
not iteroperate with the product from vendor B.

This incompatibility between offered products is exactly the same night-
mare that all sectors — government, industry, academia, et al — have lived and
are continuing to live through in the Computer Aided Design (CAD) market-
place. The problem is so severe that some organizations cannot even share
drawings with themselves because they own competing, incompatible CAD
systems. Not infrequently, major corporations enforce a de facto standard
by simply making the usage of a particular CAD system a mandatory re-
quirement for the establishment and maintenance of all sub-contracts. What
happens when two major organizations of equal weight have made incom-
patible choices and must now co-operate is not clear, but it is unlikely to be
pretty.

For a market sector whose very reason for being is to get things to work
together, repeating the vendor-specific mistake of the CAD sector would seem
the worst possible choice — it is a clarion call that the vendors just don’t “get
it”.

PIA, in and of itself, repeats this mistake: it, too, does not work with
anything but itself. But it is out of this realization that the commercialization
strategy arises. The obvious commercialization strategy for PIA is to offer it
as an open-source, freeware, de facto standard available to all who wish to
participate. The issue of incompatibility with other integration technologies
is removed by making the standard the only integration technology. This
is, of course, precisely the outcome each of the existing vendors hopes for,
with the proviso that their integration technology is the one that becomes
the standard. But as long as each is competing, none will win. We see this
in the CAD market: some are big, some are not so big, but few disappear
completely and none has won it all.

By placing a good integration technology in the public domain, it is hoped
that the existing vendors may be weaned from their attempts at a proprietary

32

coup and lured to a co-operative advantage posture as an alternative. It is
doubtful that this will result from the simple persuasion of reasoned argu-
ment; however, perhaps if they see the ball begin to roll and gain momentum
among startup companies willing to take a chance on a new technology, those
existing vendors might decide to jump on rather than be squished flat.

The actual details of the offering (publically-accessible, code-versioning
server, yada, yada, yada) are relatively minor. The only issue that suggests
itself is that the ability to update the offered software should be relatively
quick so as to take maximum advantage of the large test, debug, redesign,
augmentation community effort that tends to result from such software of-
ferings.

The following benefits are expected from the open-source, freeware com-
mercialization choice for PIA.

1. Maximum Advantage to the Government: The more organizations that
we can get to offer their information, application, technical, and scien-
tific resources through PIA-compliant means, the more the Government
will be able to mix and match productive resources to achieve the ends
of the Government and, thus, the public good.

2. Maximum Advantage to the Economy of the United States: The more
organizations of the various sectors of the United States can effectively
and efficiently interoperate and collaborate through PTA technologies,
the greater will be their competitive position in the world economy as
they form and dissolve partnerships for maximum advantage.

3. Maximum Advantage for the Existing Vendors of Integration Technol-
ogy: It is to the greatest advantage of existing vendors of integration
technology to abandon their current integration technologies and adopt
a common, integration foundation technology, that technology being,
it is hoped, PIA.

(a) This would tell their customers, both existing and new, that the
vendors finally “get it”, that their products for making things
work together do, themselves, work together.

(b) This would convert the existing vendors from individuals hawking
competing products in the streets into co-operating members of
an industry.

33

(c) This would allow the existing vendors to focus their capital re-
sources on particular elements of the integration industry in which
they have particular expertise and accomplishment rather than
having to diffuse their resources across all the elements of a very
large product area. Thus, they would all co-operate in solving
the problem once, very well rather than each compete to solve the
problem many times, poorly.

4. Customer Resources Would Be Removed From Proprietary Traps: One
of the great difficulties in the CAD arena is that the customer’s re-
sources — years of product drawings, specifications, and the like — are
held a virtual hostage by the CAD vendor because it is all stored in
the vendor’s proprietary, often closely held, internal file formats. By
adopting PIA as an open-source, freeware, de facto standard, such con-
cerns would be eliminated. A customer unable to get a major vendor
to respond to specific needs would always have the option of getting
into the business himself to meet his own needs.

5. Second-Tier Capital Resources may be Induced into the Integration
Effort: By adopting PIA as a de facto industry standard, second-tier
participants (the developers of applications for whom integration would
be a useful feature) may be induced to devote part of their captial
resources to the integration effort, thus effectively increasing the net
capital available to integration development. While no standard exists,
such second-tier participants hesitate because they do not know which
integration technology will dominate and they will not want to expend
the effort to involve themselves with all the possible choices; however,
once an industry standard evolves, even a de facto one, their choice
will be to particpate or be left behind.

6. Third-Tier Captial Resources will be Enabled: Again, by adopting an
industry standard, third-tier participants (consultants, small specialty
and niche firms, and the like) are enabled and the individually-small
capital resources each has may be brought into the integration effort.
While integration technology consists of proprietary products, such par-
ticipants find it hard to meet small local needs because there are many
different solutions being used and vendors with clear proprietary inter-
ests are trying to keep them out so as to gain all possible business for

34

themselves. This, though, works against the interests of both the cus-
tomer and the vendor because the customer may often find the vendor
unresponsive to isolated, focused needs and the vendor may often find
himself pestered by needs that do not share a broad market base. The
adoption of a standard allows third-tier participants to arise to meet
such needs.

. The Rise of the Third-Tier Participant Increases Customer Confidence:
The fact that independent consultants and software houses exist to
meet specific, focused needs should increase customer confidence in
adopting an industry standard integration technology. The customer
can proceed with some confidence that, should he choose not to be-
come an integration technology expert himself, he will still find plenty
of resources to deal with situations specific to his needs that do not
interest the major, first-tier participants of the industry.

. A Large Debugging Community is Enabled: The open-source, freeware
mode of commercialization virtually assures that a large debugging
community will develop at near-zero cost to the Government. This has
been experienced in many such open-source offerings. The key element
is to keep one, central filter on final modifications; however, this cost
is much smaller than that of establishing and maintaining a sufficient,
closely-held effort to accomplish the extensive testing, debugging, and
extension of such a program.

35

14 Slide pst_vgrf_ 0101 — Tentative Commeri-
cialization Plan — Revenue Streams

In any commercialization effort it is appropriate, indeed probably vital, to an-
swer the question “Just how are we going to turn this sow’s ear into our very
own silk purse?” The following revenue streams, all of which are based upon
the presumption of a widely-adopted PIA de facto standard, are dreamed to
exist.

The first revenue stream form, the zeroth-tier if you will, is expected to be
simple core knowledge delivery enterprises: consulting, training, installation,
service, and the like. Despite the fact that it doesn’t actually do anything,
PIA is deliciously large and complex. While clear and intuitive for some,
object-oriented technology seldom results in a simple, top-down flow, but
more often gives rise to a hither-and-yon pattern of interaction, each element
being simple, but the whole becoming bewildering for its scattered nature.
Doubtless, money will be made while holding people’s hand on their first few
trips through this wonderland.

While the commercialization plan intends to give the core technology
away free, what would seem ancillary efforts are, in fact, major software de-
velopment projects for which significant prices can be demanded by their
first-tier participant developers. Many of these efforts may, in fact, be cat-
egorized more as migration efforts of existing products available from the
current vendors in the technical integration technology marketplace. These
efforts begin with the following.

1. Wrapper development workbenchs,
2. Discipline-specific visualizers, browsers, and the like,

3. Operational suits including optimization packages, data miners, data
fusion technologies, search engines, and the like, and

4. Administrative, accounting, and operational utilities.

The first (or, perhaps, the first-and-a-half) tier may also come to include
makers of laboratory instruments and the like. An embedded PIA server
technology is forseen in which the instrument itself serves its information in
a PIA-compliant manner. It could become impossible to mis-interpret data
because its semantic meaning will become infused with it at the point of

36

measurement. A second-layer data acquisition unit could be devised that, at
each push of the button, simply interrogates every PIA-compliant instrument
it finds on its local intranet for the current reading, gathers all together into
a parameter configuration, and presents the assembled whole on to the next
consuming layer.

Furthermore, this approach to data handling can spread beyond the earth-
bound laboratory. For example, generic vehicle instruments could embed
PIA-compliant servers within them so that the task of integrating, say, a
satellite would be reduced to plugging in the desired instrument components
and providing a single organizing application that worries only about com-
bining the information that it finds, or desires to find, through self-revelation,
without the need of having to specifically program which instrument on which
bus is to provide what. Again, layers of instrumentation with well-known
conversions could be developed that would even reduce the task of orga-
nization. For example, a satellite navigation application could be devised
that sought out PIA-presented star sightings, planet sightings, and refer-
ence navigation beacon readings from different first-layer instruments and
combined the aggregate in a well-defined way to produce a standard posi-
tional result. The plug-and-play re-combination of well-known, well-defined
functions might have a significant impact on the single most expensive and
time-consuming aspect of air and space vehicle development: systems inte-
gration.

Second-tier participation is considered to involve those developers of use-
ful applications that would wish to devote their own capital resources to de-
velop PTA-compliant wrappers to their applications. This could include such
things as Finite Element Analysis (FEA) products, grid generation products,
Computational Fluid Dynamics (CFD) products, various CAD products, tra-
ditional database products, manufacturing products, ad infinitum. For all of
these, PIA-compliance might not only enable new sales (or maintain market
presence as the market moves forward into technical integration technol-
ogy), but would become a separate, billable product: buy NASTRAN and
buy the PIA-compliant, journeyman-level wrapper to NASTRAN. Because
of the amount of application-use knowledge built into a wrapper, the achiev-
able fair market price of the wrapper might well rival that of the wrapped
application: after all, you are not just selling an interface to the application,
but an intelligent interface with who knows how much built-in knowledge of
how to properly apply and exploit the application.

In addition to the sale of what will be essentially plug-and-play software

37

components, second-tier participants may also open up a new market of
over-the-net application services. For example, an engineering firm could use
NASTRAN over the net through PIA from MSC’s own servers, with MSC'’s
own little micro-cent counters quietly ticking away on the firm’s account
number. The firm would never have to buy a physical copy of NASTRAN and
install it on their own machines, nor would they ever have to buy upgrades
and install those. This is Bill Gates’ dream come true, but transferred to a
market that might actually go for the idea as a good way to do business.

A third tier of participation should arise in small software houses, con-
sultants, and the like, who, having been trained and become practiced in the
ins and outs of PTA, now market their skills and services in developing and
deploying PIA-compliant solutions for companies too small or too disinter-
ested to develop those skills and abilities internally. As mentioned elsewhere,
the presense of these third-tier participants may well increase the comfort
factor for companies lacking the substantial resources to confront technical
integration technology on their own.

A final fourth-tier participation is seen simply in the providers of raw com-
puting resources. PTA enables problem and resource utilizations approaching
the practical infinite. This will enable the sale of computers, disk drives, stor-
age servers, backup facilities, hot-sites, networks, and the like without end.
A technology such as Information Power Grid (IPG), which devotes itself
to providing computing resources without particularly providing anything to
do on those resources, might find PIA a very attractive partner: PIA orga-
nizes massive amounts of things to do while simply assuming that computing
resources will appear to do it.

Furthering the fourth-tier expectations, PIA enables efforts that have
major pent-up funding waiting. For example, PIA makes feasible the on-line
representation of the genomes, human and other, and the attendant data
mining thereof for drug discovery and the like. Industry statistics indicate
that some one trillion dollars is waiting to dump on this effort once the tech-
nology to do it is in place. Indeed, surveys portray the prevailing industry
attitude as one of panic to identify enabling tools since the expense of de-
cyphering the human genome has already been incurred and the return on
investment cannot be realized until the mining technology comes available.

Driving the pharmaceutical industry’s sense of panic all the harder is the
Government’s new drive for rapid drug (that is, antibiotic and antiviral drug)
discovery as a Home Security issue. Counter-drug discovery times of a few
days in response to a terrorist act is something that would be well-welcomed

38

by this and probably all future administrations.

The pharmaceutical industry is not the only industry with significant re-
sources awaiting an enabling technology. Home security concerns also extend
into the data mining of the huge volumes of generated intelligence informa-
tion. Indeed, this was rated by a recent OMB guidance document as being in
the same category as rapid counter-drug discovery. In addition to handling
huge data volumes as a natural, day-to-day activity, PIA’s semantic infusion
technology might also be of significant utility to this task. It goes without
saying that very significant funding will be available to those able to make
useful contributions in this area.

Another sector thought to be about to burst into major significance is
Geographical Information Systems (GIS). While I don’t understand this area
well yet, the basic thrust seems to be in organizing all that is known about
where resources of every kind are on the earth. This represents a massive
amount of data because it literally involves everything, everywhere. NASA
has, in its own dogged way, been contributing to this pile of information: it
has been taking satellite photos of every square inch of the earth in every
way and wavelength imaginable for decades: weather patterns, contour maps,
vegetation maps, rainfall maps, just about everything and anything anybody
could think of. The result is huge and it gains enormously in value when it
can be digested as a cohesive whole rather than as isolated pieces.

One significant group clearly interested in GIS is the petroleum industry.
As existing oil supplies are exploited, the search for new oil becomes pro-
gressively harder. Not merely the desire, but the pressing need is coming to
coordinate the huge amounts of data about the surface and sub-surface struc-
ture of the earth so as to identify the most probable sources of un-exploited
oil. The petroleum industry has been wandering the earth for decades, too,
making their sub-surface surveys with their sonar trucks and seismic survey
charges. As isolated pieces, the charts are worth it; as a coordinated whole,
they are expected to explode in value.

The other focus of GIS thought to hold great potential is the third, or
as some see it more aptly referred to, the developing world. It is held that
GIS can provide invaluable decision-support tools for the effective develop-
ment of the developing world — I suppose knowing the exact distribution
and demographics of population will allow the most optimal distribution of
McDonald’s franchises or something. Regardless of the precise uses, the un-
derlying realization is that the developed world is, well, developed: it is the
developing world where the great majority of the future action will take place

39

and, thus, the people intending to do big business in the future are now fo-
cusing on the tools that will give them the competitive edge in doing that
business. GIS seems to be one of the tools.

The bottom line of all this last discussion is that PIA enables the use
and integration of the vast volumes of information to be confronted by these
obviously major players.

40

15 Slide pst_vgrf 0103 — Tentative Commer-
cialization Plan — Unresolved Issues

In order for PIA to be acceptable on a commercial basis, there are parts
of its operation that must be believably secured. To do this, the PIA Ap-
plication Layer server incorporates support for strong encryption using the
algorithm of Rivest, Shamir, and Adleman (RSA). For example, all password
transactions are encrypted using the RSA algorithm. Unencrypted password
transactions are a common reason for the security conscious to disable ser-
vices (e.g., ftp).

The patent on the RSA algorithm has both expired and been put in the
public domain, so the use of that algorithm by PIA should present no problem
from that standpoint. The difficulty is that the United States has entered into
international agreements restricting the export/import of strong encryption
technologies and, thus, the transport of PIA across international boundaries
might represent a breach of such agreements. The flip side, though, is that
without the strong encryption, PIA would not be commercially viable.

Certainly, restricting PIA to US distribution only would cure this prob-
lem; however, believing that this can be reliably done is, perhaps, optimistic.
Furthermore, many US companies operate multi-nationally and there are
many multi-national partnerships which operate to the benefit of the United
States. A US-only restriction seems impractical at a real level.

At one point, I believe there was an exemption for downloadable encryp-
tion components in the international agreement. Since the RSA algorithm
is easily discoverable on the net, and there are at least some international
sources for RSA implementations (or components of implementations), it
may be the PTA implements would fall under such an exclusion.

Competent legal counsel is needed for this issue.

41

16 Slide pst_vgrf_ 0121 — Starting the Autonomous
Assembly of an Application Graph

The autonomous assembly of an application graph is started quite simply:
the need is stated to the algorithm by entering the desired result parameter,
cost/pound to low earth orbit, in the algorithm’s needed parameter list.

42

17 Slide pst_vgrf 0086 — Continuing the Au-
tonomous Assembly of an Application Graph

Under the assumption of a sufficiently rich PIA environment, an application
producing the previously needed result of cost per pound to low earth orbit
is found and becomes the basis of the application graph to be assembled.

The algorithm then inquires of that found application to determine what
parameter it needs as input to produce the cost per pound output and finds
that, in this simple example, the application needs cost and pounds. The
algorithm moves the cost per pound parameter from the needed list to the
found list and places cost and pounds on the needed list. The search for
applications then continues on.

43

18 Slide pst_vgrf_0087 — Further Recursion of
the Autonomous Assembly Algorithm

Since the needed parameter list has not been reduced solely to those param-
eter guessable on a a random basis (that is, to an independent design vector)
the autonomos application graph assembly algorithm searches on for more
applications producing the currently needed parameters, cost and pounds.
Again, it finds such applications and adds them to the building application
graph. The now found parameters cost and pounds are moved to the found
parameter list and the parameters that the newly-found applications need to
operate, fraction, gross, per use, and fized are put on the needed parameter
list. Operations then continue.

44

19 Slide pst_vgrf_ 0088 — Reduction to Appli-
cations Requiring Only Random Inputs

The application graph building process continues until the needed parameter
list kept by the alorithm consists only of inputs that can be guessed on a
random basis. This set would then constitute an independent design vector
suitable for manipulation by an optimization process.

45

20 Slide pst_vgrf 0110 — A Rocket Motor De-
sign Application with Random Inputs

As a very simple illustration of an application requiring inputs that can be
randomly guessed, consider the geometric design of a simple rocket motor.
The essense of a rocket motor is captured in three simple numbers: the cross
sectional areas of the combustion chamber, the throat, and the skirt. Any
three random numbers will give you a basic rocket motor design. Unfortu-
nately, most sets of three random numbers will give you a very bad rocket
motor design, but they will, nevertheless, give you a design. It is up to the
optimization phase to figure out which three random numbers give a best
rocket motor design for the given situation.

One can improve this design application by switching the usage of the
numbers. Instead of simply accepting them as the direct specification of the
three areas, a more sophisticated application might accept the first number
as specifying the cross sectional area of the throat (which is often dealt with
as being the key number in rocket motors) while the two succeeding numbers
would be taken to be the ratio of the two other cross sectional areas, the
combustor and the skirt, to that throat area. If the application were then to
put a stipulation on those two succeeding numbers that each must be greater
than unity, then the design space would be at least limited to traditional
convergent/divergent rocket motor designs.

46

21 Slide pst_vgrf_0106 — Applicaiton of Solu-
tion Initialization and Inprovement Tech-
nology

Once an application graph has been built by the autonomous solution system
algorithm (or by manual methods, as the case may be), some other entity
must pick an initial design (in the form of specific values inserted into the
developed independent design vector), determine the merit of that design,
and then vary those values to improve that design. This entity, and activity,
is shown as the block to the right in the diagram indicating the supposed
phases of such an activity:

1. Statistical characterization,
2. Genetic manipulation,

3. Optimization, and

4. Design for Six Sigma.

This overall design improvement activity is considered to be outside the
actual province of PIA development: PIA focuses strictly on the foundational
core of information and application representation and integration technol-
ogy. A design improvement module, like a graphical user interface, a browser,
or a search engine, is considered to be a consumer of PIA resources, not a
PIA resource in and of itself.

47

22 Slide pst_vgrf_ 0107 — Use of Relevant Ex-
perimental (or Other) Information

While the main use of PIA technology thoughtout the discussion of au-
tonomous solution systems has been for the integration of a developed ap-
plication graph, this does not preclude wrappers within that graph from
reaching out to other PIA resouces not directly participating in the solution
process.

There are some areas of engineering analysis, computational fluid me-
chanics being one well known at the Glenn Research Center, that simply do
not start and operate well from an arbitrary starting point. These analyses,
generally, need some reasonable beginning solution which they can improve
to a significantly more accurate condition. In some cases, it may be that some
pre-cursor application in the application graph will provide that “rough-in”
analysis (indeed, that was one of the original multi-fidelity analysis integra-
tion goals of PIA), but that may not always be the case.

Fortunately, the ability of a PIA application wrapper to use PIA resources
just as any other consumer of PIA-represented information would provides
the opportunity for a remedy. A wrapper able to recognize an insufficient
starting condition would be entirely within the PIA conceptual bounds if it
were programmed to browse through other PIA resouces in search of some
appropriate starting point. Taking up the computational fluid mechanics
example again, such a wrapper could browse through other PIA-wrapped
archives of experimental and analytical flow field results searching for a re-
sult to a similar problem. Since PIA makes the association of all sorts of
information possible, it is expected that the geometry of found flow field
results could be identified and that the seeking wrapper could compare the
geometries of found results to that of its own problem to further inform the
decision process as to whether or not a particular found result represented,
in whatever sense, a good starting point for the problem at hand. Such a
search is the situation depicted in the diagram.

PIA provides further facilities that extend even this situation. It is possi-
ble to devise application wrappers that are aware of a supporting help-desk
facility, presumably staffed by expert humans, for their wrapped application.
In appropriate situations, a wrapper could communicate with that help-desk
to indicate its concerns and await direction. The help-desk might run ex-
periments or independent analyses to provide a starting point and direct

48

the wrapper to them when they become available. As an alternative, the
help-desk might examine the overall situation and advise the wrapper that
the proposed effort is outside the bounds of reason; the wrapper’s response
would probably be to make a notation to that effect and inform the rest
of the application graph that the particular configuration of the problem is
untenable. The possibilities for such a mechanism are limitless.

49

